Metamaterials Could be the Key to Unlock THz Spectrum for 6G

We have looked at reconfigurable intelligent surfaces (RIS), also known as intelligent reflecting surfaces (IRS) in many different posts on this blog earlier (see related posts at the bottom of this post).

A recently published feature article in IEEE Spectrum, "Metamaterials Could Solve One of 6G’s Big Problems" looked at the Metasurfaces in detail. Quoting from the article:

As we move to higher frequencies, the propagation characteristics become more “hostile” to the signal. The wireless channel varies constantly depending on surrounding objects. At 5G and 6G frequencies, the wavelength is vanishingly small compared to the size of buildings, vehicles, hills, trees, and rain. Lower-frequency waves diffract around or through such obstacles, but higher-frequency signals are absorbed, reflected, or scattered. Basically, at these frequencies, the line-of-sight signal is about all you can count on.

Such problems help explain why the topic of reconfigurable intelligent surfaces (RIS) is one of the hottest in wireless research. The hype is justified. A landslide of R&D activity and results has gathered momentum over the last several years, set in motion by the development of the first digitally controlled metamaterials almost 10 years ago.

I should point out here that the academia assumes that we will keep moving to using higher frequencies as we move to the next generation of technology. This is not necessarily the complete story. For 5G the assumption was that it would be rolled out in mmWave but the main spectrum that is driving 5G today is the mid-band (mainly C band) spectrum. The same would be true for 6G.

RIS use advanced substances called metamaterials to reflect and refract electromagnetic waves. Thin two-dimensional metamaterials, known as metasurfaces, can be designed to sense the local electromagnetic environment and tune the wave’s key properties, such as its amplitude, phase, and polarization, as the wave is reflected or refracted by the surface. So as the waves fall on such a surface, it can alter the incident waves’ direction so as to strengthen the channel. In fact, these metasurfaces can be programmed to make these changes dynamically, reconfiguring the signal in real time in response to changes in the wireless channel. Think of reconfigurable intelligent surfaces as the next evolution of the repeater concept.

Planning and installing the RIS nodes is only part of the challenge. For an RIS node to work optimally, it needs to have a configuration, moment by moment, that is appropriate for the state of the communication channel in the instant the node is being used. The best configuration requires an accurate and instantaneous estimate of the channel. Technicians can come up with such an estimate by measuring the “channel impulse response” between the base station, the RIS, and the users. This response is measured using pilots, which are reference signals known beforehand by both the transmitter and the receiver. It’s a standard technique in wireless communications. Based on this estimation of the channel, it’s possible to calculate the phase shifts for each unit cell in the RIS.

The current approaches perform these calculations at the base station. However, that requires a huge number of pilots, because every unit cell needs its own phase configuration. There are various ideas for reducing this overhead, but so far none of them are really promising.

You can read the complete article here.

Related Posts

Comments